首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21744篇
  免费   3245篇
  国内免费   4111篇
测绘学   1081篇
大气科学   3918篇
地球物理   5790篇
地质学   9960篇
海洋学   2715篇
天文学   1635篇
综合类   1742篇
自然地理   2259篇
  2024年   38篇
  2023年   295篇
  2022年   764篇
  2021年   855篇
  2020年   703篇
  2019年   785篇
  2018年   1003篇
  2017年   973篇
  2016年   1135篇
  2015年   880篇
  2014年   1123篇
  2013年   1280篇
  2012年   1101篇
  2011年   1160篇
  2010年   1229篇
  2009年   1199篇
  2008年   999篇
  2007年   1049篇
  2006年   846篇
  2005年   761篇
  2004年   577篇
  2003年   618篇
  2002年   568篇
  2001年   562篇
  2000年   687篇
  1999年   973篇
  1998年   827篇
  1997年   838篇
  1996年   792篇
  1995年   689篇
  1994年   597篇
  1993年   540篇
  1992年   441篇
  1991年   322篇
  1990年   249篇
  1989年   219篇
  1988年   216篇
  1987年   143篇
  1986年   155篇
  1985年   107篇
  1984年   101篇
  1983年   96篇
  1982年   100篇
  1981年   73篇
  1980年   71篇
  1979年   67篇
  1978年   31篇
  1977年   29篇
  1975年   30篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
Solar wind propagation from the point of measurement to an arbitrary target in the heliosphere is an important input for heliospheric, planetary and cometary studies. In this paper a new kinematic propagation method, the magnetic lasso method is presented. Compared to the simple ballistic approach our method is based on reconstructing the ideal Parker spiral connecting the target with the Sun by testing a previously defined range of heliographic longitudes. The model takes into account the eventual evolution of stream–stream interactions and handles these with a simple model based on the dynamic pressure difference between the two streams. Special emphasis is given to input data cleaning by handling interplanetary coronal mass ejection events as data gaps due to their different propagation characteristics. The solar wind bulk velocity is considered radial and constant. Density and radial magnetic field are propagated by correcting with the inverse square of the radial distance. The model has the advantage that it can be coded easily and fitted to the problem; it is flexible in selecting and handling input data and requires little running time.  相似文献   
992.
In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system (RAS) and water exchange system (WES), this study was carried out to analyze the water quality and nitrogen budget including various forms of nitrogen, microorganism and chlorophyll-a. Nitrogen budget was calculated based on feed input, shrimp harvest, water quality and renewal rate, and collection of bottom mud. Input nitrogen retained in shrimp was 23.58% and 19.10% respectively for WES and RAS, and most of nitrogen waste retained in water and bottom mud. In addition, most of nitrogen in the water of WES was TAN (21.32%) and nitrite (15.30%), while in RAS was nitrate (25.97%), which means that more than 76% of ammonia and nitrite were removed. The effect of microalgae in RAS and WES was negligible. However, bacteria played a great role in the culture system considering the highest cultivable cultivable bacterial populations in RAS and WES were 1.03×1010 cfu mL?1 and 2.92×109 cfu mL?1, respectively. Meanwhile the proportion of bacteria in nitrogen budget was 29.61% and 24.61% in RAS and WES, respectively. RAS and WES could realize shrimp high stocking culture with water consuming rate of 1.25 m3 per kg shrimp and 3.89 m3 per kg shrimp, and power consuming rates of 3.60 kw h per kg shrimp and 2.51 kw h per kg shrimp, respectively. This study revealed the aquatic environment and nitrogen budget of intensive shrimp farming in detail, which provided the scientific basis for improving the industrial shrimp farming.  相似文献   
993.
长腹剑水蚤属(Oithona)是广泛分布于海洋近岸和外海海域的中小型桡足类中最为丰富的类群之一,由于个体小且形态差异微小,通过传统的形态学分类法对其进行准确鉴定难度较大。本文对南海分布的长腹剑水蚤属内的5个种,即瘦长腹剑水蚤(O.tenuis)、羽长腹剑水蚤(O.plumifera)、刺长腹剑水蚤(O.setigera)、伪长腹剑水蚤(O.fallax)和长刺长腹剑水蚤(O.longispina)线粒体COⅠ基因序列以及DNA数据库中长腹剑水蚤属其他地区种类COⅠ基因序列进行比较分析,使用ABGD (Automatic Barcode Gap Discovery)和GMYC (Generalized Mixed Yule Coalescent)模型进行物种界定,分析种间种内遗传距离,并构建系统进化关系。结果显示ABGD和GMYC模型均可以很好地对长腹剑水蚤进行种类划分;种内遗传距离为0.0%~1.6%,种间遗传距离为17.7%~44.5%(Kimura 2-parameter双参数模型),表明种间出现较高的分化;贝叶斯系统树和最大似然树进化树结果均表明,简长腹剑水蚤(O.simplex)与其他种类相距较远,羽长腹剑水蚤和拟长腹剑水蚤(O.similis)中存在隐种的分化,分别是我国南海海域和地中海的羽长腹剑水蚤以及朝鲜海峡和北海的拟长腹剑水蚤,种间遗传距离分别为18.6%、22.9%。  相似文献   
994.
The modified suction caisson (MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant.  相似文献   
995.
996.
997.
998.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
999.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1000.
Availability of reliable delineation of urban lands is fundamental to applications such as infrastructure management and urban planning. An accurate semantic segmentation approach can assign each pixel of remotely sensed imagery a reliable ground object class. In this paper, we propose an end-to-end deep learning architecture to perform the pixel-level understanding of high spatial resolution remote sensing images. Both local and global contextual information are considered. The local contexts are learned by the deep residual net, and the multi-scale global contexts are extracted by a pyramid pooling module. These contextual features are concatenated to predict labels for each pixel. In addition, multiple additional losses are proposed to enhance our deep learning network to optimize multi-level features from different resolution images simultaneously. Two public datasets, including Vaihingen and Potsdam datasets, are used to assess the performance of the proposed deep neural network. Comparison with the results from the published state-of-the-art algorithms demonstrates the effectiveness of our approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号